HUMASORB®

Solution To Pollution

Low Cost for Simultaneous Cleanup of Heavy

Metals, Radionuclides and Organics

Metals, Radionuclides, Organics

Multi-Purpose Adsorber

High Cation-Exchange Capacity

Can Be Regenerated

Cost-Effective

Environmentally Friendly


January 2023

ARCTECH, Inc.
P O. Box 382
Centreville, Virginia 202122 USA
CONTACT 571 338-5005 dwalia2arctech.com
www.arctech.com

ARCTECH Corporate Profile

- Established in 1988 as Spin-Off Company
 - From a Major US Aerospace Company
- Corporate Headquarters & Technical Research Center
 - Chantilly, Virginia
- Manufacturing Plant
 - South Boston, Virginia

- Commercial Products Applications in the US, Egypt, Gulf Countries, & South Korea
- Creating Biotechnology Solutions since Mid 70's
- Selected as One of the Top Six Bio-Processing Firms in the United States
 - By Ernst & Young in 1989
- Founding Member of Humic Products Trade Association (HPTA) in 2011

WATER & SOCIETY ISSUES

- Water, organic matter and heat energy are absolute essentials for sustaining life
- Water is controlled and uncontrolled resource on our planet
- Clean water must be available at affordable cost for everyone

WATER QUALITY TODAY IS A MAJOR ISSUE

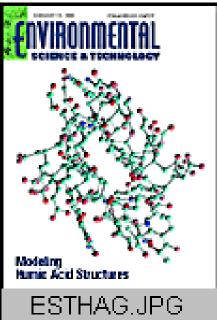
CONTAMINANTS OF CONCERN IN WATER

- Suspended Solids Insoluble metal salts, soil and sludge particles
- Organics Petroleum and chlorinated hydrocarbons, pesticides
- Metals Heavy metals and radionuclides
- Anions Nitrate, phosphate, sulfate
- Microbes Coliform, Cryptosporidium sp., Giardia sp.
- Viruses Norwalk

STATE-OF-THE- ART Water Treatment Technology

- Filtration Charcoal, activated carbon, sand
- Resins Cation and anion exchange
- Membrane Separation Reverse Osmosis, hollow fibers
- Chemical Oxidation Peroxide, ozone, chlorination, UV
- Chemical Reduction
- Chemical precipitation Lime addition
- Biological Aerobic and anaerobic

MODELS OF HUMIC ACID MOLECULE


A. Stevenson, 1972

HC*O

B. TNB, 1998 (Temple, Northeastern and

Birmingham)

Empirical Formula: $C_{36}H_{30}O_{15}N_2.xH_2O$ x=0-15

Why HUMASORB® for Water Application?

Issues of Today


- ❖ 122 Trillion Gallons of Wastewater Per Year Need to be Treated
- Large Undergrounds Watersheds Remain Contaminated Because of High Costs
- ❖ Safe Drinking Water Becoming Scarce and Costly
- ❖Impaired Irrigation Water Supply

HUMASORB® Solutions

- HUMASORB® can Cost-Effectively Treat Toxic Organic, Metals, Radionuclides and Pathogens
- ❖ HUMASORB® for Cost- Effective Subsurface Barrier Treatment
- ❖ HUMASORB® Effective for Removing Toxic Contaminants from Drinking Water
- ❖ HUMASORB® can Recycle Wastewaters into Organic Fertilizers.

ARCTECH Corporate Profile

- Established in 1988 as Spin-Off Company
 - From a Major US Aerospace Company
- Corporate Headquarters & Technical Research Center
 - Chantilly, Virginia
- Manufacturing Plant
 - South Boston, Virginia

- Commercial Products Applications in the US, Egypt, Gulf Countries, & South Korea
- Creating Biotechnology Solutions since Mid 70's
- Selected as One of the Top Six Bio-Processing Firms in the United States
 - By Ernst & Young in 1989
- Founding Member of Humic Products Trade Association (HPTA) in 2011

Military Wastes Applications

HUMASORB®TREATED AND DISPOSED SPENT DECONTAMINATION SOLUTION FROM US ARMY CHEMICAL WEAPONS DEMIL FACILITY AT JOHNSTON ATOLL

 Successfully completed treatment of approximately 24,000 gallons of Spent Decontamination Solution (SDS) that contained RCRA hazardous levels of arsenic, lead and mercury.

US ARMY

DESTRUCTION OF LEWISITE IN TON CONTAINER SLUDGE AND ONSITE SECONDARY WASTE MANAGEMENT AT PINE BLUFF ARSENAL WITH HUMASORB® TECHNOLOGY

US Army Chemical Material Agency and EAI Corporation

- Pine Bluff Arsenal (PBA) has approximately 4,400-Ton Containers (TCs) requiring final disposal. The ton containers were originally used to store variety of chemical agents since almost World War I.
- The micro-scale destruction experiments were conducted by EAI Corporation in 15-mL glass vials with TFE/silicone lined phenolic caps. A total of 24 decontamination reagents were evaluated by EAI, including five (5) HUMASORB decontamination reagents. Only HUMASORB reagents included hydrolysis, oxidation and adsorption mechanisms.
- HUMASORB decontamination reagents were effective even at 100°F compared to other reagents, which required higher temperatures (150 or 180°F).
- The results from the secondary waste minimization tests show that after the HUMASORB treatment, arsenic levels are reduced to non-detect levels (Detection Limit: 0.6 ppm). The Resource Conservation and Recovery Act (RCRA) limit for arsenic is 5 ppm.

HUMASORB® and Advanced Actodemil® Neutralization Technology for Safe Destruction of Picric Acid and Arsenic

KOBE STEEL, LTD

Table 1. Results of Analyses for Contaminants in the Treated Sample

Compound	Concentration	Regulatory Limit
Arsenic	ND	5.0 mg/L TCLP
Barium	1.3 mg/L TCLP	100 mg/L TCLP
Cadmium	ND	1.0 mg/L TCLP
Chromium	1.3 mg/L TCLP	5.0 mg/L TCLP
Lead	ND	5.0 mg/L TCLP
Mercury	ND	0.2 mg/L TCLP
Selenium	ND	1.0 mg/L TCLP
Silver	ND	5.0 mg/L TCLP
Semivolatile Organic	Compounds - None I	Detected

Volatile Organic Compounds - None Detected

- Using the Actodemil® technology for destruction of the explosive material picric acid from aqueous solution and the HUMASORB® technology for the removal of As (V) from an aqueous solution.
- initial concentration of picric acid of 6,600 mg/L. However, picric acid was not detected after treatment with the a-HAX reactant. A summary of the results from the TCLP inalyses are presented in Table 1. No organic compounds were.

detected.

Preserving tomorrow's world... today

Industrial Wastes Applications

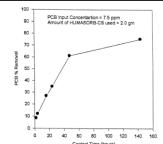
HUMASORB® REMOVING
MERCURY <5 ppt AND PCB NONDETECT FROM STORM WATER AT A
SCRAP METAL YARD IN MICHIGAN

• To date over 3 million gallons of wastewater has been treated without requiring HUMASORB® replacing.

• For treatment of waste streams containing multiple metals in India. The results with the

electroplating streams containing multiple toxic metals, the removal of metals was more than

streams from the tannery showed chromium removal of more than 93-99% and with



HUMASORB® TECHNOLOGY
DEMONSTRATED FOR
REMEDIATION OF METALCONTAMINATED TANNERY AND
ELECTROPLATING WASTE STREAMS
IN INDIA

National Association of State Development Agencies, Washington, D.C.

Technical Feasibility of
Polychlorinated Biphenyls (PCBs)
Removal from Liquids by
HUMASORB®-CS

95%.

Contact Time, hours	Input concentration, ppm	Output concentration, ppm	Remo
24	7.511	4.9	3
48	7.511	2.95	6
144	7.511	1.87	7
168	7.511	2.03	7

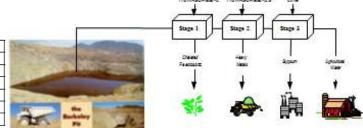
Contact Time, hours	PCBs concentration, ppm	Recovery %
1	5.81	52
24	8.22	73
48	8.76	78
72	8.81	78

 HUMASORB® technology successfully adapted to provide a solution to Mason & Hanger at the Iowa Army Ammunition Plant for the simultaneous destruction of M3D propellant and recovery of Depleted Uranium (DU) contamination.

Feasibility Tests with HUMASORB® for Removal of Ba and Sr from Frac Wastewater

Sample ID		Sample on		Frac Water NY		
Contaminants		Ba, ppm	Sr, ppm	Ba, ppm	Sr, ppm	
	Provided Data		1520 3120		50.8	
3B®	Untreated	1313.2	2762.4	5.7	44.0	
ASOI -CS	Treated	797.7	2177.5	0.318	7.0	
HUMASORB®	Reduction %	39.26	21.17	94.39	84.06	

HUMASORB®-CS Treated and Untreated Frac Wastewater


Mining Industry Wastes Applications

HUMASORB® TECHNOLOGY
DEMONSTRATED FOR RESOURCE
RECOVERY FROM BERKELEY PIT
ACID WATERS IN BUTTE, MONTANA

U.S. Department of Energy/MSE Technology Applications, Inc.

PILOT TESTING RESULTS

METALS	DEMONSTRATION OBJECTIVES	PROCESS PERFORMANCE
Arsenic	< 0.5 ppm in product	0.294-0.481 ppm in product
Cadmium	< 0.5 ppm in product	0.280-0.360 ppm in product
Cadmium	> 70% Removal in Stage 2	67.56-98.93 % Removal in Stage 2
Copper	> 70% Removal in Stage 2	85.44-99.96 % Removal in Stage 2
Iron	> 70% Removal in Stage 2	73.15-99.97 % Removal in Stage 2
Zinc	> 70% Removal in Stage 2	48.02-99.90 % Removal in Stage 2

• ARCTECH's HUMASORB® process is an effective approach for economically viable treatment of acid mine waters such as Berkeley Pit water.

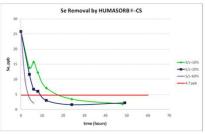
Demonstration of HUMASORB®
Technology for In-situ Treatment of
Acid Mine Drainage in the
Abandoned Tide Mine Site, Indiana
County, PA

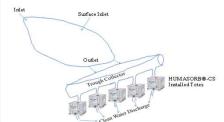
Pennsylvania Department of Environmental Protection (PA DEP) and Blacklick Creek Watershed Association, Inc.

- HUMASORB®-L treatment meets the success criteria for removing metals to > 90% and raising the pH to more than two units, criteria set forth for this project by the PA DEP.
- The HUMASORB®-L treated acid mine water enhances growth of SRB which can lead to improving the operation of the passive treatment system.
- HUMASORB®-L system can be easily deployed at mine sites.
- HUMASORB®-L can be utilized as active treatment for metal recovery as a micronutrient fertilizers.
- HUMASORB®-L Offers Lower Life Cycle Costs for AMD Treatment

S HUMSAORB®-L

HUMASORB®-CS Feasibility Test for Selenium and Other Toxic Chemicals from the Runoff Water from Coal Waste Pile at Mammoth Coal Co., Montgomery, WV • Selenium and Other Toxic Chemicals are Removed from the Runoff Water from Coal Waste Pile.

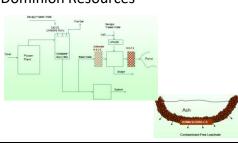

Toxic Metal	Untreated, ppb	HUMASORB Treated, ppb	NPDES Permit Limit
As	24	n.d.	n.a.
Cd	n.d.	n.d.	n.a.
Cr	n.d.	n.d.	n.a.
Hg	n.d.	n.d.	n.a.
Pb	n.d.	n.d.	n.a.
Se	13	n.d.	8 ppb


n.d.: not detected n.a: not available Sample Submitted by SNF Flomin, Inc.

Mining Industry Wastes Applications

HUMASORB® Treatment for Selenium Removal from Coal Mine Discharge Water in West Virginia • HUMASORB®-CS had good capability to remove Se in the WV Coal Mine Discharge water that can meet the more stringent NPDES regulation. About three hours contact time with 60% of S/L loading, selenium went down less than 4.7 ppb.

Toxic Metals


HUMASORB®-CS Implementation Approach for Removal of Selenium from Coal Mine Discharge Wastewater.

HUMASORB Treated (mg/L)

Power Plant Wastes Applications

HUMASORB®-CS Feasibility Test Showed that Toxic Metals are Removed from Spent Scrubber Wastewaters at Dominion Resources Chesterfield Power Plant-Virginia

Dominion Resources

							_
Toxic Metals (mg/L)	Ble	erfield Unit8 ed Slurry (5/2010)	Chesterfield WWTP Effluent (2/25/2010) Initial HUMASORB Treated		Regulatoy Limit	HUMASORB®	
(11412)	Initial	HUMASORS Treated				Compilance	l
As	0.598	nd	0.696	nd	0.20	Yes	IL
Ba	0.427	0.33	0.416	0.303	3.00	Yes	
Cd	0.108	nd	0.119	nd	0.05	Yes	L
Cr	0.175	nd	0.150	nd	0.60	Yes	L
Hg	0.785	nd	0.674	nd	0.05	Yes	
Pb	6.966	nd	5.832	nd	0.10	Yes	
8e	1.030	0.133	1.070	0.103	2.00	Yes	
Ag	nd	nd	nd	nd	0.10	Yes	
Cu	nd	nd	nd	nd	0.10	Yes	
Fe	nd	nd	0.155	nd	1.00	Yes	Г
NI	1.084	nd	0.143	nd	0.50	Yes	
П	0.87	nd	0.799	0.011	0.50	Yes	
Zn	1.801		0.067	nd	0.10	Yes	_

≘ ∣								
		pH3	pH5	pH6.5	pH3	pH5	pH6.5	
	As	1.163	1.135	1.580	nd	nd	nd	5.0
┪	Ba	1.220	0.608	0.680	0.011	0.006	0.003	100.0
\neg	Cd	0.193	0.183	0.183	nd	nd	nd	1.0
\neg	Cr	0.090	0.090	0.095	nd	nd	0.006	5.0
╗	Hg	nd	nd	nd	nd	nd	nd	0.2
П	Pb	1.055	1.118	1.028	nd	0.052	0.037	5.0
	8e	1.165	1.215	1.585	nd	nd	nd	1.0
	Ag	nd	nd	nd	nd	nd	nd	5.0
	Cu	9.023	nd	nd	nd	nd	nd	
	Fe	0.683	nd	nd	nd	nd	nd	
	N	2.315	1.258	0.193	0.045	0.072	0.011	
	П	1.345	1.208	1.288	nd	nd	0.045	·
	Zn	1.003	0.143	nd	nd	nd	nd	

Ash Pond Leachate (mg/L)

nd: not detected

scrubber waste water

TCLP: Toxicity Characteristic Leaching Procedure

ash pond leachate

Municipal Wastes Applications

HUMASORB®-CS Amended Smart Sponge® Feasibility Proven For Removal of Toxic Metals, PCB and Oils

AbTech Industries Inc.

- All RCRA heavy metal mix (As, Ba, Cd, Cr, Pb, Hg, Se and Ag) and Cu are removed completely to 100% by HUMASORB®-CS amended Smart Sponge® except As. Removal % of As was 95.7%.
- The result of TCLP test shows that heavy metal leaching complies with the TCLP Regulatory Level.
- Metal
 Leschate, ppm
 TCLP Regulatory Level, ppm
 Complianc

 Ag
 ND
 5
 Complianc

 As
 0.074
 5
 S

 Bs
 0.034
 100
 C

 Cd
 ND
 1
 Yes

 Cu
 ND
 5
 Yes

 Cu
 ND
 Not Listed
 Hg

 Hg
 0.006
 0.2
 Pb

 De
 0.92
 5

 Sa
 ND
 1
- PCB removal was 43.75%.
- Phosphorus was removed 97.56 % by HUMASORB®-CS Amended Smart Sponge®.

Drinking Water Applications

HUMASORB® MATKA UNIT FOR SAFE DRINKING WATER

• MATKAs, a common word from the Hindi language and Kolshi in Bangladesh, are in common use in rural and poor households on the Indian subcontinent.

Tests conducted in Prototype HUMASORB® Matka System

Contaminant	Untreated Water, ppm	Treated Water, ppm	WHO Guideline for Drinking Water System, ppm
Lead	5-20	ND	0.01
Arsenic	5-20	ND	0.01
Chromium	5-20	ND	0.05
Fluoride	5-20	ND	1.50
Hardness	451	19.75	NE
Nitrate	95.54	ND	50

ECO.

ND: Not Detected, NE: Not Established

> Total System under 300-500 Rupees for a 3-gallon

(11 litres) MATKA

➤ Provide 300-360 gallons (1,130-1,360 litres of drinking water

ightharpoonup HUMASORB $^{\circ}$ recharge cost : less than 500 Rupees

HUMASORB® System is Robust to Treat Brines of Varying Characteristics Generated at Chemical Agent Disposal Sites

Successful Operations with Brines of Varying Characteristics at JI

Input Brine

	Concentration, mg/L					
Metal	Brine # 1	Brine # 2	Brine # 3			
Aluminum	64	4.3	7.8			
Antimony	0.79	3.5	24			
Arsenic	0.25	0.22	2.7			
Barium	ND < 2.0	2	ND			
Beryllium	ND < 0.02	0.02	ND			
Boron	72	16	76			
Cadmium	0.52	0.82	0.74			
Chromium	360	9.3	20			
Cobalt	0.61	0.1	ND			
Copper	650	12	18			
Lead	2.1	8.2	26			
Manganese	12	0.6	0.54			
Mercury	0.13	0.0049	ND			
Nickel	32	1.6	0.92			
Selenium	ND <0.2	0.2	ND			
Silver	2	0.35	ND			
Thallium	0.23	0.1	ND			
Tin	0.6	0.36	0.59			
Vanadium	0.51	0.1	ND			
Zinc	78	46	69			

	Input	Treated
Phosphorus	14-1,100 PPM	ND-36 PPM

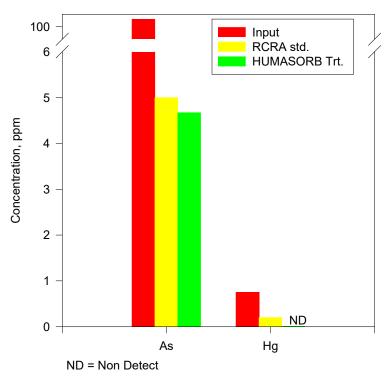
Operating Conditions

Brine Flow Rate: 8-10 gpm

HUMASORB®: Same dosage for all brines

pH: 4-5 (for all the 36 isotainers)

Additives:Iron compound for some brines
No downtime for HUMASORB® system at JI


Treated Brine

	Concentration, mg/L					
Metal	Brine # 1	Brine # 2	Brine #3			
Aluminum	1.06	2.45	ND			
Antimony	0.061	2.1	ND			
Arsenic	ND	0.117	ND			
Barium	ND	0.065	0.00433			
Beryllium	ND	ND	ND			
Boron	46.2	14.7	50.4			
Cadmium	ND	0.504	0.0103			
Chromium	1.84	1.65	0.0105			
Cobalt	ND	0.015	ND			
Copper	2.02	1.47	0.0105			
Lead	ND	0.271	ND			
Manganese	0.108	0.377	3.97			
Mercury	ND	ND	ND			
Nickel	0.0401	0.636	0.00766			
Selenium	0.0637	ND	ND			
Silver	ND	0.0223	0.143			
Thallium	ND	ND	ND			
Tin	ND	ND	ND			
Vanadium	ND	ND	ND			
Zinc	0.0693	29.4	0.0518			

HUMASORB® Technology is Effective for Treatment of Waste Brines at Johnston Island Atoll

Concentration of metals in a composite sample collected at the end of 145 bed volumes

Arsenic was present as an uncharged species, while mercury was present as cationic in the brine water

HUMASORB® Mobile Unit at Army's Johnston Island Chemical Weapons Destruction Facility

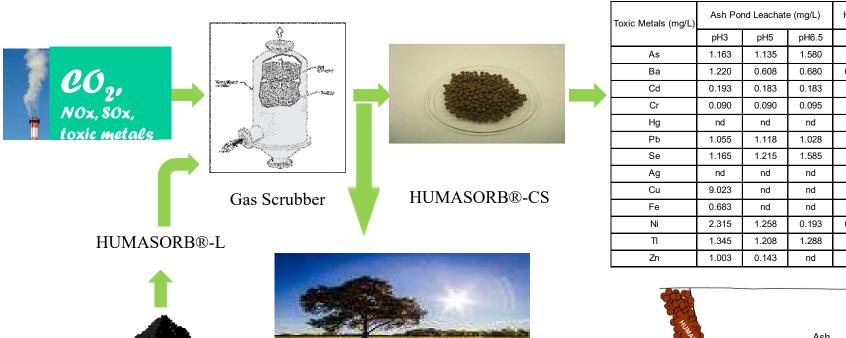
HUMASORB® TECHNOLOGY DEMONSTRATION UNIT

HUMASORB® Removing Mercury and PCB from Storm Water In Michigan

HUMASORB® Removing Zinc and Toluene to Compliance Level from a Factory Drain Effluent Water In Massachusetts

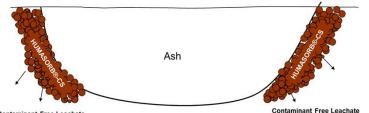
HUMASORB®-CS

Installation of HUMASORB®-CS in Drain System



contaminant	untreated	treated
Zinc	3.14 ppm	0.317 ppm
Toluene	2,200 ppb	N.D
Copper*	0.616 ppm	0.092 ppm
Lead*	0.109 ppm	N.D
Nickel*	0.103 ppm	0.012 ppm
Phthalate*	120 ppb	26 ppb
Phenol*	21 ppb	17 ppb
Oil & Grease*	61 ppm	25 ppm
Xylene*	430 ppb	N.D
Acetone*	7400 ppb	150 ppb

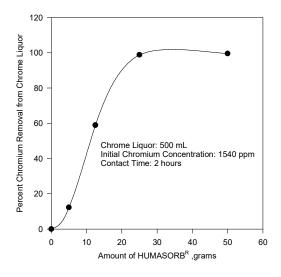
^{*} Not regulated but removed

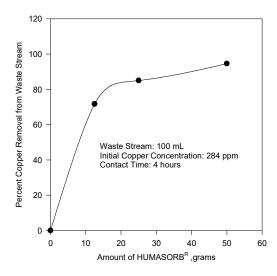

HUMASORB-L Capture CO2 Along with Other Contaminants are Recycled into HUMASORB®-CS Water Filter and Soil Fertility

Coal

HUMASORB®-CS Feasibility Test for Contaminant of Toxic Chemicals form Ash Pond Leachate

Toxic Metals (mg/L)		Ash Pond Leachate (mg/L)		HUMASORB Treated (mg/L)			TCLP Hazardous Waste Limit, mg/L	
		рН3	pH5	pH6.5	рН3	pH5	pH6.5	
	As	1.163	1.135	1.580	nd	nd	nd	5.0
	Ва	1.220	0.608	0.680	0.011	0.006	0.003	100.0
	Cd	0.193	0.183	0.183	nd	nd	nd	1.0
	Cr	0.090	0.090	0.095	nd	nd	0.006	5.0
	Hg	nd	nd	nd	nd	nd	nd	0.2
	Pb	1.055	1.118	1.028	nd	0.052	0.037	5.0
	Se	1.165	1.215	1.585	nd	nd	nd	1.0
	Ag	nd	nd	nd	nd	nd	nd	5.0
	Cu	9.023	nd	nd	nd	nd	nd	
	Fe	0.683	nd	nd	nd	nd	nd	
	Ni	2.315	1.258	0.193	0.045	0.072	0.011	
	TI	1.345	1.208	1.288	nd	nd	0.045	
	Zn	1.003	0.143	nd	nd	nd	nd	




Grand Challenge Awarded by Canada, 2014

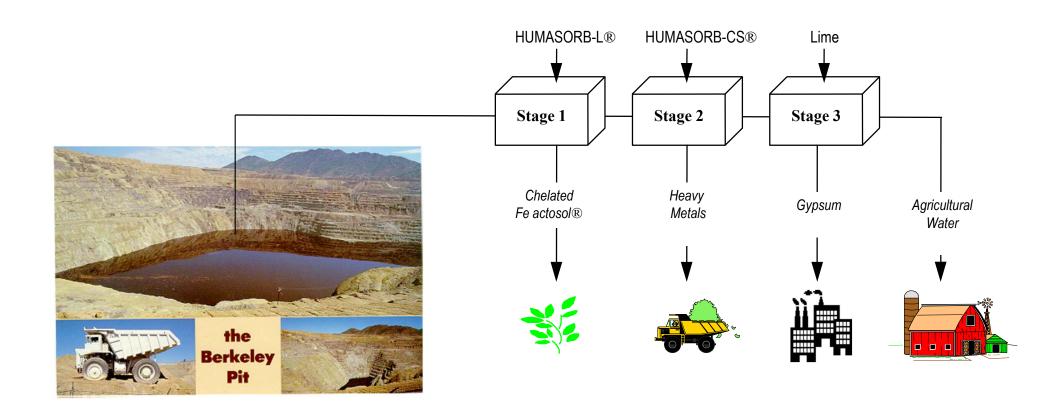
HUMASORB® DEMONSTRATION SETUP FOR TESTS IN INDIA

HUMASORB® IS EFFECTIVE IN TREATMENT OF CONTAMINATED WATER IN MATKA TESTS

Tests conducted in Prototype HUMASORB Matka System

Contaminant	Concentration in Untreated Water, ppm	Concentration in Treated Water , ppm	WHO Guideline for Drinking Water System,ppm
Lead	5-20	ND	0.01
Arsenic	5-20	ND	0.01
Chromium	5-20	ND	0.05

ECONOMIC FEASIBLILITY


Total System under 300-500 Rupees for a 3-gallon (11 litres) MATKA

` Provide 300-360 gallons (1.1136

Provide 300-360 gallons (1,1130-1,360 litres of drinking water

HUMASORB ® recharge cost : less than 500 Rupees

Simplified Flow Diagram of the ARCTECH Process to Convert Berkeley Pit Water to Fertilizer and Agricultural Water

Background-Hard Rock Mine-Berkeley Pit, Butte, Montana

Mined for gold, silver, and copper, the region of Butte, Montana,

nicknamed "The Richest Hill on Earth" by the end of the 19th century.

The Berkeley Pit is a gigantic former open pit one mile wide and 900 feet deep mine.

Approximately 5-6 million gallons flows into the pit everyday from underground aquifers.

Water is acidic (pH~2) and laden with toxic metals such as As, Cd, Zn.

In 1995, a large flock of migrating snow geese landed on the Berkeley Pit water and were killed, most likely by the high concentration of acid.

HUMASORB® Approach Proven Effective for Resource Recovery of AMD Waters

	Untreated	treated
Metals		
	ppm	
Al	224	0.428 (B)
Cd	1.82	0.0016 (B)
Cu	201	0.0437 (B)
Fe	660	75.1
Ni	1.02	0.124 (B)
Zn	626	26.2

Micronutrient fertilizer contained Fe, Zn, Cu, Mn, Mg & Humic Acid

Plant Growth Studies at Montana State Univ.

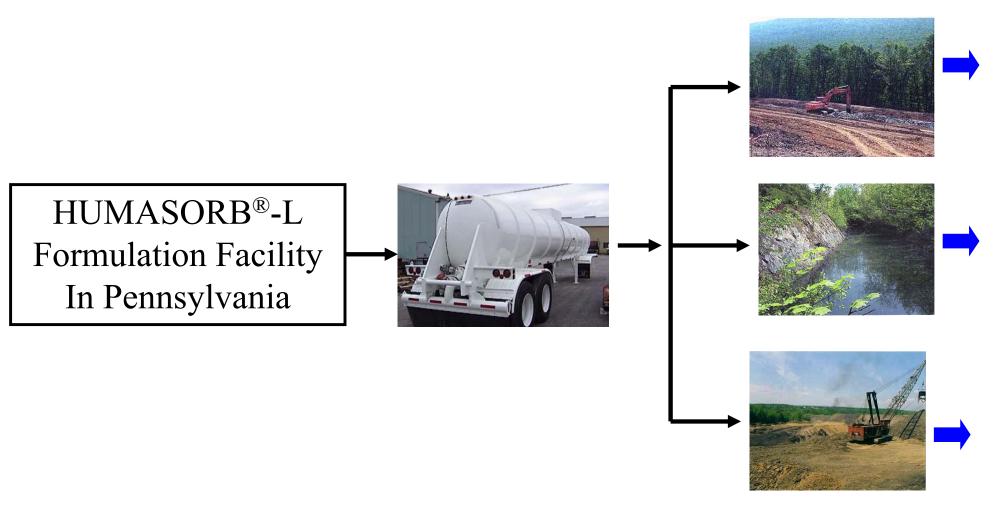
- •actosol® enhanced the development and growth of wheat & alfalfa
- •actosol® treatment increased yield of wheat & alfalfa by 40%
- •actosol® increased micronutrient uptake by roots of wheat & alfalfa

B: Below method detection limit

Economics

5 million gallon per day capital cost \$25 million

Revenues :\$106 million @\$2 per gallon fertilizer


Costs :\$89 million

Profit Before Tax:\$17 million

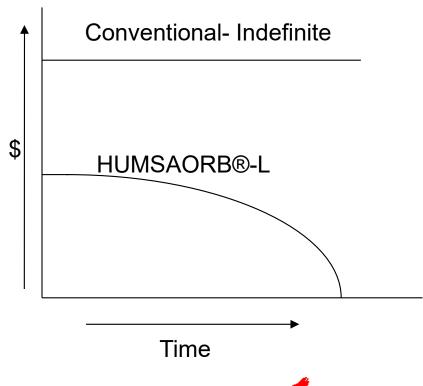
Potential Profit of \$10/1000 gallon AMD treated water

Multi Site In-Situ Treatment Approach

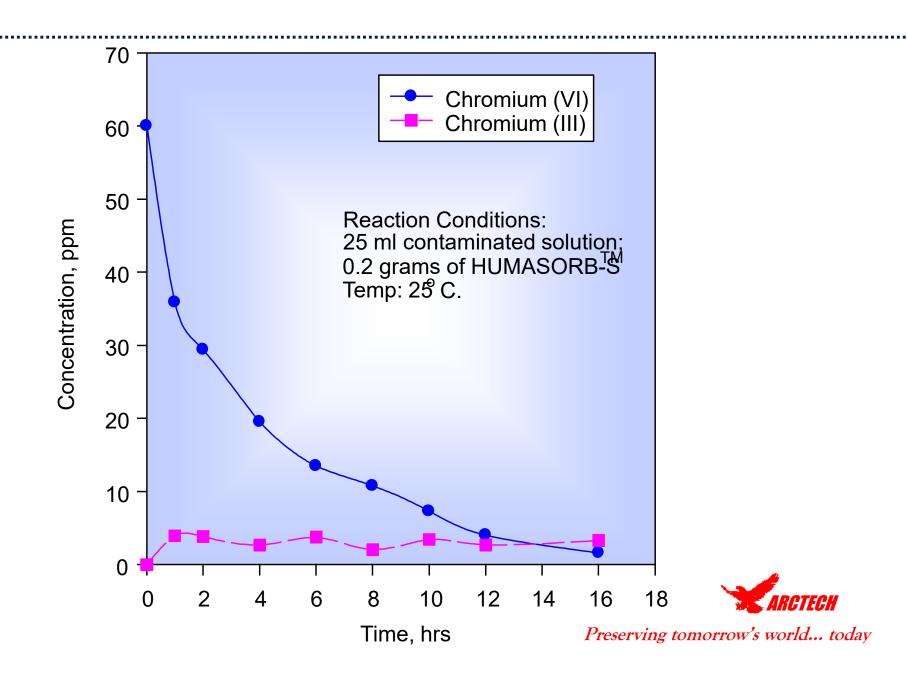
Periodic Treatments At Each Site

Preserving tomorrow's world... today

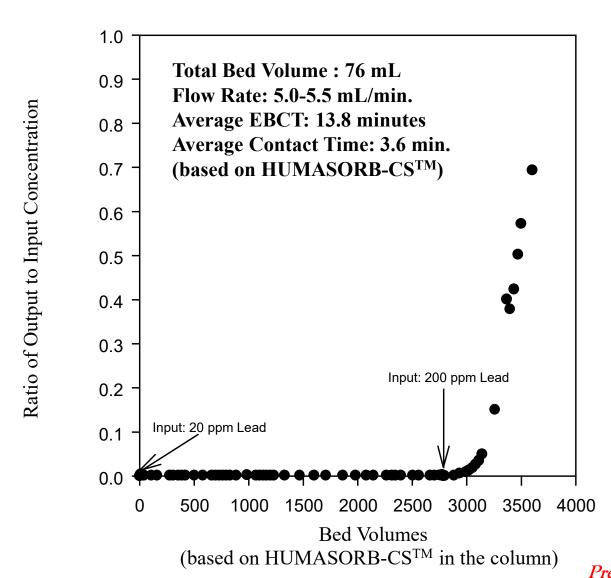
HUMSAORB®-L Treatment Cost Is Function of pH of AMD Water

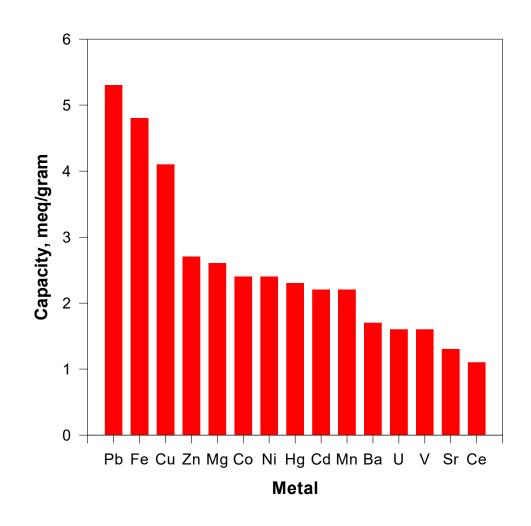

pН	Dosage Per 1000 Gallons	Cost, \$/1000 Gallons
High to Slightly Acidic	1 to 1.5	0.50 to 0.75
Near Neutral	0.5	0.25 to 0.35

Commercial experience of lime treatment cost for active treatment is estimated at \$1.6-2.00/1000 gallons

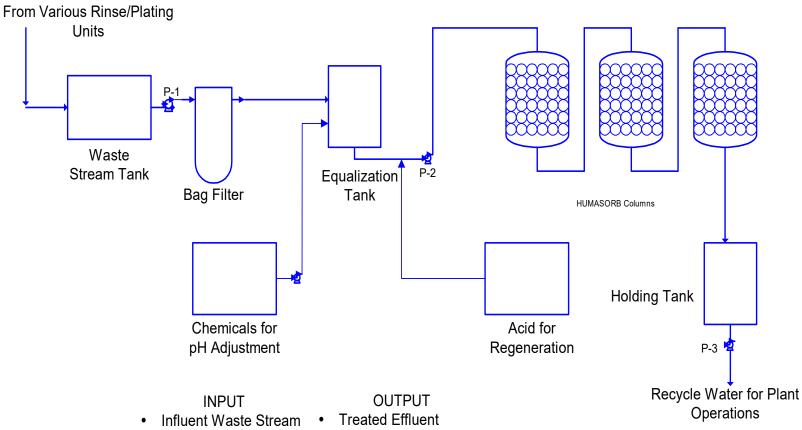

HUMASORB®-L Offers Lower Life Cycle Costs for AMD Treatment

- Current average cost of \$0.50/1000 gallons results in total cost of \$12 million per year for treating 23 billion gallons of AMD in Pennsylvania (PADEP Jan. 2006 Press Release)
- ➤ At this rate Life Cycle costs will exceed \$1.2 billion over next 100+years
- ➤ HUMASORB®-L Life Cycle cost will be only \$24-60 million over 2-5 years Treatment

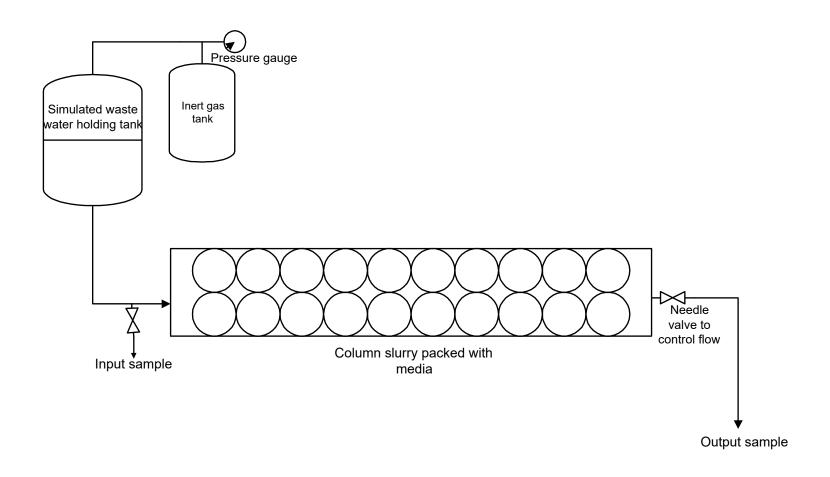



HUMASORB-CS Reduced Chromium (vi) to Chromium (iii) and Removed Chromium from Solution

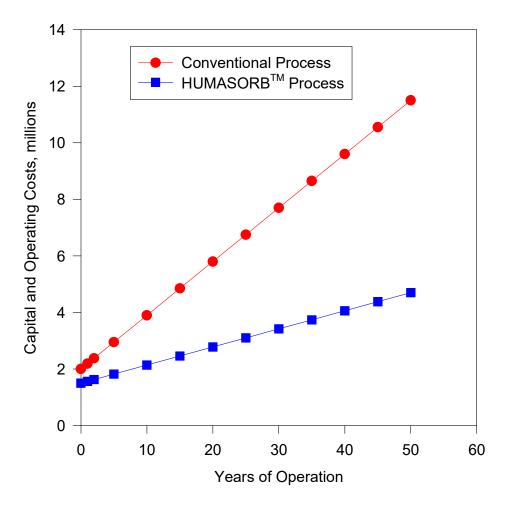
Breakthrough Curve for Lead in a ColumnPpacked with HUMASORB®-CS (20%) and Sand (80%)


HUMASORB® HAS HIGH CAPACITY FOR METAL REMOVAL

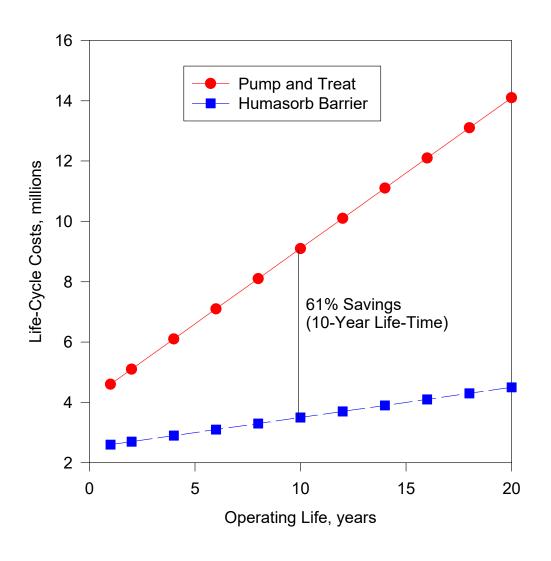
**: Capacity Estimated from Langmuir Model and/or Experimental Observation


Simplified Flow Scheme for the Proposed ARCTECH System

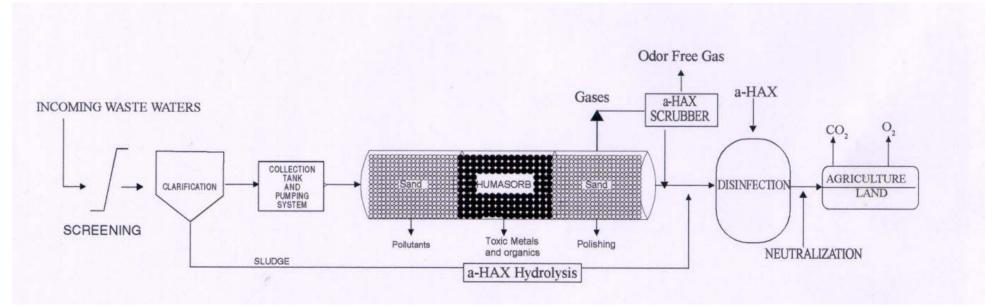
- HUMASORB
- Acid for Regeneration
- pH Adjustment as Needed
- Spent HUMASORB
- Spent Regenerant Acid



Simulated Barrier Experimental Setup


HUMASORB® HAS LOWER LIFE-CYCLE COST

Treatment Rate: 30 million gallons per year



Conventional Process: Electrochemical treatment, filtration and clarification. Costs based on EPA Report 542-R-99-006 HUMASORBTM Process: Estimated Costs for water contaminated with multiple metals and organic compounds

HUMASORB® BARRIER HAS LOWER LIFE-CYCLE COST COMPARED TO A PUMP AND TREAT SYSTEM

HUMASORB® SYSTEM WILL CONVERT WASTEWATER INTO AGRICULTURAL WATER AT SADAT CITY, EGYPT

4.9

Per Annum Costs \$, million

1. Operating costs-raw materials, chemicals

2. O & M

Total

Costs:

a-HAX, HUMASORB® and Chemicals and supplies delivered cost at Sadat City (assumes 18,000 m³ per day treatment rate)

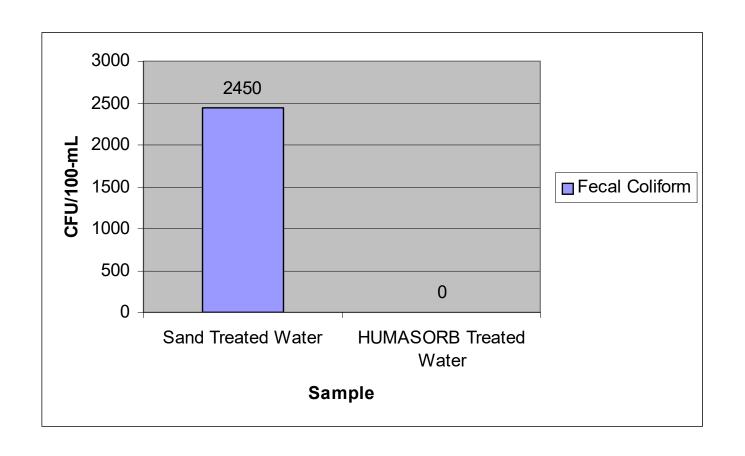
Per Annum revenues \$, million

1. Tipping fee charge	1.6
2. Crops	5.4
3. CO ₂ credit	<u>0.1</u>

Revenues:

Total

Tipping fee charges \$0.25/ m³ average of today's rates in Egypt. Net profit of \$1,500 /acre/year from combined forests and edible crops on 3,600 acres. CO₂ credit at average \$10/ton of CO₂ based on 3 tons of capture per acre per year from 3,600 acres of cultivated area


HUMASORB® UNIT AND STORAGE TANK AT SADAT CITY PROJECT SITE

HUMASORB® SYSTEM IS EFFECTIVE FOR PATHOGEN REMOVAL FROM WASTEWATER AT SADAT CITY

HUMASORB® TREATMENT MEETS FAO AND EGYPTIAN NATIONAL LIMITS OF TOXIC METALS IN IRRIGATION WATERS

	FAO Limit	Egypt Limit	Pond Water	Meet Criteria	HUMASORB ^R Treated Water	Meet Criteria
			Cond	centration in ppi		
Al	5		0.19	Y	0.18	Υ
As	0.1	0.1	0.23	N	0.08	Υ
Ва			3.80		0.07	
В			0.27		0.21	
Cd	0.01	0.01	0.00	Y	0.00	Y
Са			49.20		86.73	
Cr	0.1	0.1	0.02	Y	0.00	Υ
Со	0.05	0.05	BDL	Y	0.00	Υ
Cu	0.2	0.2	BDL	Y	0.07	Y
Fe	5	5	0.53	Y	0.21	Υ
Pb	5	5	0.03	Y	0.00	Υ
Li	2.5		3.70	N	0.02	Y
Mg			39.10		19.21	
Mn	0.2	0.2	0.20	Y	0.02	Y
Мо	0.01	0.01	BDL	Y	0.01	Υ
Ni	0.2	0.2	0.03	Y	0.01	Y
Se	0.02		0.02	Y	0.00	Y
Sn					0.00	
Ti			0.01		0.01	
W			0.00		0.00	
V	0.1		0.05	Y	0.03	Υ
Zn	2	2	0.16	Y	0.02	Y

ORGANIC FERTILIZER WATER PRODUCED BY HUMASORB® TREATMENT CONTAINS SIGNIFICANT QUANTITIES OF PLANT NUTRIENTS

Nutrient	Concentration, ppm	Total Available ⁺ , kgs
Nitrogen	6.7	32,660
Phosphorus	23.7	264,600 (as P ₂ O ₅)
Potassium	910	5,350,000 (as K ₂ O)
Humic Acid	25	121,500

HUMASORB® TREATED WATER ENHANCES COTTON PLANT GROWTH

Control Area (with sand treated water)

Test Area (with HUMASORB® treated water)

Organic Fertilizer Water Produced by HUMASORB® Treatment Increased in Height, Weight, Cone Length and Cone Weight of Sorghum Plants

Treatment	Plant Height	Plant Weight	Cone Length (cm)	Cone Weight
SAND	$212.833 \pm 1.58 \mathbf{b}$	736.50 ± 24.71 b	$22.567 \pm 0.79 \; \mathbf{b}$	20.833 ± 0.569 b
HUMASORB	$214.733 \pm 2.10 \text{ a}$	$970.83 \pm 28.98 \; \mathbf{a}$	$26.367 \pm 0.80 \; \mathbf{a}$	$23.90 \pm 0.69 \; \mathbf{a}$
LSD	5.277	76.252	2.259	1.799

Organic Fertilizer Water Produced by HUMASORB® Treatment Increased in Height of *cupressus* sp. Trees

Treatment	At Cultivation (Height 1)	At 4 Months (Height 2)	H2 – H1 (cm)	Growth Rate
SAND	59.02075	71.7915	12.77075 ± 0.511 b	$19.5681 \pm 0.985 \ \mathbf{b}$
HUMASORB	55.5285	70.5835	15.055 ±0.216 a	23.89606± 0.497 a
LSD	1.36			2.70

Economic Analysis of HUMASORB® Technology forWastewater Facility at Sadat City

Per Annum Costs \$, million	Per Annum revenues \$, million	
Total treatment operation, raw materials, chemicals and	1. Tipping fee charge 3.2	
agriculture costs 7.5	2. Crops 5.8	
	3. CO ₂ credit <u>0.04</u>	
Total 7.5	Total 9.0	
Costs:	 Revenues: ❖Tipping fee charges \$0.5/ m³ ❖Revenues of \$2,099 / feddan/year from combined intercropping trees, and crops 2,770 feddans ❖CO₂ credit at average \$5/ton of CO₂ base 3 tons of capture per feddan per year fro 2,770 feddans of cultivated area 	ed on

HUMASORB® TECHNOLOGY ENHANCES ENVIRONMENT

Eliminates discharge of untreated or partially treated wastewater on land / or and water bodies

Frees up fresh water for drinking water purposes from requirements of irrigation

Eliminates Landfills, Waste Impoundments and Associated Environmental Problems

Enhances soils and agricultural productivity

Facilitates capture of greenhouse CO₂ gases

CREATES TOTAL SOLUTION FOR RECYCLING OF WASTEWATER AND SOLID WASTES